
Creating Reproducible Data
Science Projects

Reproducibility and Why it Matters

A Nightmare Scenario
Imagine you completed a one-off analysis a few months ago, creating a fairly
complex data pipeline, machine learning model and visualisations. Fast forward to
today and you have Emily, a senior executive at your company, asking you to
reuse that work to help solve a similar, time-critical business problem. She looks
stressed.

Now if only you could remember which copy of your model was the correct one; if
you could make sense of the spaghetti code scattered throughout your Jupyter
Notebooks, each with helpful names such as Untitled_1 and Untitled_2; what did
the data_process function do and why are there six slightly different versions of
it? If only there was some documentation!

“No problem!” you assure her, and after a few sleepless nights, during which you
had to reverse engineer the entire codebase, the analysis is ready. Emily looks
impressed, that promotion you’ve been waiting for might finally happen.

https://www.venture.co.uk/sword-venture-blogs/creating-reproducible-data-science-projects/
https://www.venture.co.uk/sword-venture-blogs/creating-reproducible-data-science-projects/

The next day Emily is back from presenting your findings. She’s not happy –
apparently there were mistakes in the analysis caused by simple coding errors
that could have cost the company millions. If only you had run some tests! You
apologise as she walks away muttering under her breath, you sit there and
wonder if maybe you should pack up your desk before you head home for the
night.

This blog article gives an overview of how we avoid this scenario by ensuring our
data science projects and code are reproducible and production ready from the
outset.

Why Reproducible Data Science?
Reproducible data science projects are those that allow others to recreate and
build upon your analysis as well as easily reuse and modify your code. In business,
reproducible data science is important for a number of reasons:

It’s not uncommon for business stakeholders to request what a data
scientist thought was a one-off analysis, be repeated with different
parameters. If your code is not easily adapted this will prevent you from
meeting your stakeholders’ new requirements within a reasonable
timeframe.
If a data science project gets good traction with your stakeholders, it will
need to be productionised at scale. In most companies this means handing
over your project to an engineering team to implement. Well documented
production ready code will make this transition much smoother.
Reproducibility builds trust, stakeholders are more likely to trust a model
if they can walk through the analysis themselves. Well tested code is also
more accurate and less likely to contain obvious programming mistakes.
Reproducibility allows for knowledge sharing amongst data scientists and
aspiring data scientists at your company. Good documentation allows
others to understand the data science techniques used and reproducible
code allows them to build on and reuse parts of your team’s project.
And finally, it will make your life as a data scientist much less frustrating,
making you much happier and much more productive.

Below are some rules we have learnt through our experience in delivering data
science projects, many of which are borrowed from the software engineering

domain. These are intended to introduce you to each of the concepts, without
plunging into any individual techniques in too much detail. Hopefully this will
help you think about how best to generate more reproducible data science
projects in your team.

Rules for Reproducible Data Science

Use Version Control
Use a version control system such as GitHub or GitLab, to provide a remote
backup of your codebase, track changes in your code and collaborate effectively
as a team. Try to use git best practises, frequently committing small changes that
solve a specific problem.

Even if you are working alone use a branching workflow such as Git Flow. Avoid
working directly on the master branch, this is for production ready code only and
most development branches will be merged to master once they are ready.

Where possible consider implementing a code review process, ensuring new code
is reviewed by at least one colleague. The goal of the code review is to help catch
any errors and improve the quality of the code committed to your codebase. This
is generally performed before merging to a master branch and after any tests or
continuous integration has been run (more on this below). Even if you are
working on a project alone, it can be worth asking a colleague to have a look over
your code from time to time.

Agree a Common Project Structure
Agree a common project structure for all your team’s data science projects. This
will enable collaboration as everyone will be familiar with where things are and
aid project reproducibility.

If your team doesn’t already have its own project structure, consider using tools
such as Cookiecutter to generate a standard data science project folder structure
for you.

If a specific projects requirements mean you need to use a different structure
than your team normally uses, document the new structure in your repositories
README.md file.

https://github.com/?source=post_page---------------------------
https://about.gitlab.com/?source=post_page---------------------------
https://sethrobertson.github.io/GitBestPractices/?source=post_page---------------------------
https://datasift.github.io/gitflow/IntroducingGitFlow.html?source=post_page---------------------------
https://medium.com/palantir/code-review-best-practices-19e02780015f?source=post_page---------------------------
https://drivendata.github.io/cookiecutter-data-science/?source=post_page---------------------------#cookiecutter-data-science

Use Virtual Environments
Use conda or Python’s built in venv environments to keep track of your projects
dependencies and Python version information. This will avoid dependency version
conflicts between your projects, stopping the base development environment from
becoming bloated and unmanageable.

Once your environment is fully set up, you can create an environments.yml or
requirements.txt file to capture and share your projects dependencies. This allows
others to quickly and easily run your code, as they can automatically install your
project’s dependencies in their environment. Helping avoid having to hunt down
the specific package versions and libraries that your project relies on.

Clearly Document Everything
Clearly documenting your projects and code will save you time if you have to
revisit the project at a later date. It will also make it far easier for others to use
your code or follow and build on your analysis.

At a minimum include a README.md file at the root level of your repository. The
contents will vary between projects but should include a description of the project
and an overview of the methodology and techniques used.

You may want to create separate in-depth documentation for data scientists
describing the statistics and techniques used. If your project produces code as a
key component, consider including separate in depth API documentation. This will
help others get started without having to look through your code and work it out
for themselves.

The code itself should be written in a clear, self-documenting fashion, using
descriptive variable names instead of names like x, y or data.

Including comments can be important for explaining sections of complicated code
and can particularly useful in data science. As it is often necessary to
communicate why and how you are using a certain algorithm or technique.

Include docstrings in your functions and classes, these should contain a quick
description of what each function does and why. Generally, this includes a
description and data types of their parameters and returned output. Your team
will need to agree on a docstring style and use it for all of your projects, generally

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html?source=post_page---------------------------
https://docs.python.org/3/tutorial/venv.html?source=post_page---------------------------
https://realpython.com/documenting-python-code/?source=post_page---------------------------

we like to use Google style docstrings. Consider using a Python documentation
tool such as Sphinx to automatically generate API documentation in HTML format
from your codes docstrings.

Use Jupyter Notebooks Wisely
Jupyter Notebooks are fantastic for exploring your data, creating reproducible
analysis and are an answer the broader scientific reproducibility crisis. They allow
data scientists to include their original code and interactive visuals alongside a
detailed research or analysis output. This allows others to not only understand
your analysis but also the story of how you got there, allowing the reader to
interact directly with the data and insights.

As Jupyter Notebooks allow out of order execution be careful when sharing them,
check cells are in the correct execution order and that none are missing. Also
make sure all dependencies are imported, ideally at the top of the notebook, try
running the notebook all the way through to ensure nothing has broken. Finally,
even though your code is executed by running cells individually, it is good
practise to use functions to avoid a crowded and confused global namespace.

Unfortunately however Jupyter Notebooks have one big weakness, in their
current form they are a poor tool for creating reproducible code. It is very
difficult to work collaboratively on a notebook using version control, leading to
logic being duplicated across team members notebooks. Notebook code can also
be hard to test and integrate with continuous integration tools. Jupyter also lacks
the features of a fully-fledged IDE such as automatic linting, error detection and
usage checks.

With this in mind consider moving your core logic out of your Jupyter Notebooks
and into separate importable Python module files. This will enable the sharing of
code across your team, avoiding duplicate and slightly edited versions of core
data science code being scattered across your teams’ notebooks. Code quality will
also improve as you can easily collaborate, run tests and conduct code reviews on
your shared modules.

Keep Your Code Stylish
Agree coding standards and in general try to write Pythonic code in line with
Python’s PEP8 style guide. Using a fully featured IDE such as PyCharmor Visual

https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html?source=post_page---------------------------
http://www.sphinx-doc.org/en/master/?source=post_page---------------------------
https://jupyter.org/?source=post_page---------------------------
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970?source=post_page---------------------------
https://www.youtube.com/watch?v=7jiPeIFXb6U&source=post_page---------------------------
https://www.python.org/dev/peps/pep-0008/?source=post_page---------------------------
https://www.jetbrains.com/pycharm/?source=post_page---------------------------
https://code.visualstudio.com/?source=post_page---------------------------

Studio Code with built in linting, will highlight any poorly styled code and help
identify and syntactic errors in your code.

Using an automatic code formatter such as Black will ensure that the code in your
teams projects has a consistent style, improving readability. This will also improve
the quality of code reviews as diffs will be smaller and there will be less squabbles
over code style, allowing reviewers to focus on the code quality instead.

 Black Playground: left original code, right Black formatted code.

Test Your Code
Use a unit testing framework such as PyTest to catch any unexpected errors and
test that your logic executes as expected. Where appropriate consider using Test
Driven Development, this will ensure your code is error free and satisfies your
requirements as you write it.

It is also a good idea to use a tool such as Coverage to measure the proportion of
your code covered by your unit tests. Ideally you want your code coverage to be
as close to 100% as possible, to ensure most of your code is fully tested. Python
IDEs such as PyCharm have built in testing and coverage support, even
automatically highlighting which lines of code are covered by your tests.

If each function in your codebase has been well tested, this improves reusability.
Making it much less likely for coding errors to affect your current and future
analysis results. Having a good suite of tests also ensures that you don’t break
anything if you need to edit or add features to your code, for example to meet a
stakeholder’s changing requirements. Tests reduce technical debt and make it
easier for those unfamiliar with the project to work with your codebase.

Use Continuous Integration
Consider using continuous integration tools such as Travis CI or Circle CI, to
automatically test your code when merged to your master branch. Not only does
this prevent broken code from reaching master, it also simplifies the code review
process. You can even use Black with a pre-commit hook to automatically format
committed code, removing any debates over code style from the review process
and ensuring a standard code style across your repositories.

On merge testing and coverage with Travis CI.

https://code.visualstudio.com/?source=post_page---------------------------
https://github.com/psf/black?source=post_page---------------------------
https://black.now.sh/?version=stable&state=_Td6WFoAAATm1rRGAgAhARYAAAB0L-Wj4ARIAmpdAD2IimZxl1N_WlkPinBFoXIfdFTaTVkGVeHShArYj9yPlDvwBA7LhGo8BvRQqDilPtgsfdKl-ha7EFp0Ma6lY_06IceKiVsJ3BpoICJM9wU1VJLD7l3qd5xTmo78LqThf9uibGWcWCD16LBOn0JK8rhhx_Gf2ClySDJtvm7zQJ1Z-Ipmv9D7I_zhjztfi2UTVsJp7917XToHBm2EoNZqyE8homtGskFIiif5EZthHQvvOj8S2gJx8_t_UpWp1ScpIsD_Xq83LX-B956I_EBIeNoGwZZPFC5zAIoMeiaC1jU-sdOHVucLJM_x-jkzMvK8Utdfvp9MMvKyTfb_BZoe0-FAc2ZVlXEpwYgJVAGdCXv3lQT4bpTXyBwDrDVrUeJEg5cXH4TUTNf-yo029ofjTcZgdwbwkBGElHbHHsQNOhuA4R9GbE2Xx6TfVmH9I4AsqU3ohV7t3GkBwkM8XInLiVOQZ4p5yjM-SW4u3I6_BUS8o2djSZaPvzZPDScXVk1OXu3w0wV7DfrgiK_dpzHntoOvqSHrNLg-Ea6zvV6G2nil3QBTBPl5PDtMwDKchtvwmlhnbvTOrh53X9EnSe8QtRKbMLO4pxx4bAJX-hVCXl5OHpCGZLowD7JdKj1-NctJy9DL99yr-X6yu7KwGCYG7t3fm-lt7Lg_HS9xbBrWDVKBKwM2F7hmR1_n9RFjznRBHD3OpHKlgiWjbWJI0Q6GhXazSt_NVH1KtFiY_UPzzuchkeq2AcjGvQd3-ZPkoFJkNU1Xx7q1i62bM0OKwmDiCfvkAawxnd7m-XNxYKWe-wOQsezLPJVoqGQVoAAAAMKfaCNgGGWKAAGGBckIAABcXArGscRn-wIAAAAABFla&source=post_page---------------------------
https://realpython.com/python-testing/?source=post_page---------------------------
https://github.com/pytest-dev/pytest?source=post_page---------------------------
https://www.freecodecamp.org/news/test-driven-development-what-it-is-and-what-it-is-not-41fa6bca02a2/?source=post_page---------------------------
https://www.freecodecamp.org/news/test-driven-development-what-it-is-and-what-it-is-not-41fa6bca02a2/?source=post_page---------------------------
https://coverage.readthedocs.io/en/v4.5.x/?source=post_page---------------------------
https://www.jetbrains.com/pycharm/?source=post_page---------------------------
https://www.jetbrains.com/help/idea/viewing-code-coverage-results.html?source=post_page---------------------------
https://travis-ci.com/?source=post_page---------------------------
https://circleci.com/product/?source=post_page---------------------------#how-it-works
https://black.readthedocs.io/en/stable/?source=post_page---------------------------
https://ljvmiranda921.github.io/notebook/2018/06/21/precommits-using-black-and-flake8/?source=post_page---------------------------

Sharing Data & Models
Unlike software engineering, data science projects produce more than just code;
there are the test and training datasets, intermediate products and of course the
models themselves. Version control is particularly important given the typically
iterative process of finding the optimal model, allowing you to go back and tweak
older models.

For projects with reasonably small datasets and model sizes, you may get away
with using the same system used to version control your code for your data and
models. However for projects with larger files or many iterations this may not be
possible, for example GitHub has a number of size restrictions on its repositories
including a max file size of 100 MB.

For larger or more complex projects consider using a cloud storage solution such
as AWS S3, Azure Blob or locally hosted network storage to store your model and
data. This can be combined with DVC a version control system designed to
effectively version control the output of machine learning projects, without
pushing your large data and model files to GIT.

Try to avoid manual data manipulation in your project, this can be invisible to
others unless you document the exact process and therefore impossible for them
to reproduce. Take care also to use relative paths in your code when working with
local datasets and consider using modules such as pathlib for platform agnostic
file paths.

Data Pipeline Management
Try to make your data pipeline code modular, breaking your pipeline into modules
for each discrete process and unit testing each of them. For larger more complex
pipelines consider using a workflow management tool such as Spotify’s Luigi or
Apache Airflow to execute your Python modules as chained batch jobs in a
directed acyclic graph. This will make your pipeline more scalable and handle
failures, dependency resolution and visualization.

Although not all these rules may apply to your data science projects, I
hope this article has contained some useful ideas and has inspired you to
think about how to improve the reproducibility of your data science
projects.

https://help.github.com/en/articles/what-is-my-disk-quota?source=post_page---------------------------
https://aws.amazon.com/s3/?source=post_page---------------------------
https://azure.microsoft.com/en-gb/services/storage/blobs/?source=post_page---------------------------
https://dvc.org/?source=post_page---------------------------
https://docs.python.org/3/library/pathlib.html?source=post_page---------------------------
https://github.com/spotify/luigi?source=post_page---------------------------
https://airflow.apache.org/?source=post_page---------------------------

Thanks for reading!

Written by: Justin Boylan-Toomey – Data Scientist at Sword Venture

Want to read more that Justin has written follow him here:

https://towardsdatascience.com/@justinboylantoomey

https://medium.com/@justinboylantoomey

Home

https://www.linkedin.com/company/venture-information-management/
https://medium.com/@justinboylantoomey
https://medium.com/@justinboylantoomey
https://www.venture.co.uk/

